(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
r(r(x1)) → s(r(x1))
r(s(x1)) → s(r(x1))
r(n(x1)) → s(r(x1))
r(b(x1)) → u(s(b(x1)))
r(u(x1)) → u(r(x1))
s(u(x1)) → u(s(x1))
n(u(x1)) → u(n(x1))
t(r(u(x1))) → t(c(r(x1)))
t(s(u(x1))) → t(c(r(x1)))
t(n(u(x1))) → t(c(r(x1)))
c(u(x1)) → u(c(x1))
c(s(x1)) → s(c(x1))
c(r(x1)) → r(c(x1))
c(n(x1)) → n(c(x1))
c(n(x1)) → n(x1)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(b(z0)) → c4(S(b(z0)))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
T(r(u(z0))) → c8(T(c(r(z0))), C(r(z0)), R(z0))
T(s(u(z0))) → c9(T(c(r(z0))), C(r(z0)), R(z0))
T(n(u(z0))) → c10(T(c(r(z0))), C(r(z0)), R(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
S tuples:
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(b(z0)) → c4(S(b(z0)))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
T(r(u(z0))) → c8(T(c(r(z0))), C(r(z0)), R(z0))
T(s(u(z0))) → c9(T(c(r(z0))), C(r(z0)), R(z0))
T(n(u(z0))) → c10(T(c(r(z0))), C(r(z0)), R(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
K tuples:none
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, T, C
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
T(r(u(z0))) → c8(T(c(r(z0))), C(r(z0)), R(z0))
T(s(u(z0))) → c9(T(c(r(z0))), C(r(z0)), R(z0))
T(n(u(z0))) → c10(T(c(r(z0))), C(r(z0)), R(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(b(z0)) → c4(S(b(z0)))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
S tuples:
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(b(z0)) → c4(S(b(z0)))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
K tuples:none
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c4, c5, c6, c7, c11, c12, c13, c14, c15, c1, c2, c3
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 12 dangling nodes:
R(b(z0)) → c4(S(b(z0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
S tuples:
R(r(z0)) → c1(S(r(z0)), R(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(R(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
K tuples:none
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c13, c14, c15, c1, c2, c3
(7) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:none
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(n(z0)) → c15(N(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [4]
POL(N(x1)) = 0
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4] + x1
POL(c(x1)) = [3] + [3]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [5]x1
POL(r(x1)) = [4]x1
POL(s(x1)) = [2]x1
POL(u(x1)) = [5]
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:
C(n(z0)) → c15(N(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(u(z0)) → c5(R(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [5]
POL(N(x1)) = 0
POL(R(x1)) = [2]x1
POL(S(x1)) = 0
POL(b(x1)) = [4]
POL(c(x1)) = [3]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [4]x1
POL(r(x1)) = [4]x1
POL(s(x1)) = x1
POL(u(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(u(z0)) → c11(C(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [3] + x1
POL(N(x1)) = 0
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4]
POL(c(x1)) = [5]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = x1
POL(r(x1)) = [4]x1
POL(s(x1)) = x1
POL(u(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(n(z0)) → c3(S(r(z0)), R(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [5]
POL(N(x1)) = 0
POL(R(x1)) = [4]x1
POL(S(x1)) = 0
POL(b(x1)) = [4] + x1
POL(c(x1)) = [3] + [3]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [1] + [3]x1
POL(r(x1)) = [4]x1
POL(s(x1)) = x1
POL(u(x1)) = [1] + x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
N(u(z0)) → c7(N(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [3] + [2]x1
POL(N(x1)) = [4] + [4]x1
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4]
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [4] + [3]x1
POL(r(x1)) = [4]x1
POL(s(x1)) = x1
POL(u(x1)) = [1] + x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(r(z0)) → c1(R(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [3]
POL(N(x1)) = 0
POL(R(x1)) = x1
POL(S(x1)) = 0
POL(b(x1)) = [2]
POL(c(x1)) = [1] + [4]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [1] + [4]x1
POL(r(x1)) = [1] + [2]x1
POL(s(x1)) = [4] + [3]x1
POL(u(x1)) = x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(n(z0)) → c14(N(c(z0)), C(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [3] + x1
POL(N(x1)) = [1]
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4]
POL(c(x1)) = [5] + [2]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [2] + x1
POL(r(x1)) = [4]x1
POL(s(x1)) = x1
POL(u(x1)) = [1] + x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(s(z0)) → c12(S(c(z0)), C(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [4]x1
POL(N(x1)) = [3]
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4] + x1
POL(c(x1)) = [2] + [3]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [2] + [3]x1
POL(r(x1)) = [4] + [4]x1
POL(s(x1)) = [5] + x1
POL(u(x1)) = [4] + x1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
C(r(z0)) → c13(C(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(r(z0)) → c13(C(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [5] + [2]x1
POL(N(x1)) = [2]
POL(R(x1)) = 0
POL(S(x1)) = 0
POL(b(x1)) = [4]
POL(c(x1)) = [2]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [3] + [4]x1
POL(r(x1)) = [4] + [4]x1
POL(s(x1)) = [4] + x1
POL(u(x1)) = [5] + x1
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R(s(z0)) → c2(S(r(z0)), R(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [2] + x1
POL(N(x1)) = [2]
POL(R(x1)) = [2]x1
POL(S(x1)) = [2]
POL(b(x1)) = [4]
POL(c(x1)) = [1] + [4]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [2] + [4]x1
POL(r(x1)) = [4] + [4]x1
POL(s(x1)) = [5] + x1
POL(u(x1)) = [4] + x1
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:
S(u(z0)) → c6(S(z0))
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(u(z0)) → c6(S(z0))
We considered the (Usable) Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
s(u(z0)) → u(s(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
n(u(z0)) → u(n(z0))
And the Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(C(x1)) = [5] + [4]x1
POL(N(x1)) = x1
POL(R(x1)) = [4]x1
POL(S(x1)) = [3] + x1
POL(b(x1)) = [4] + x1
POL(c(x1)) = [3] + [4]x1
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c13(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(n(x1)) = [4] + [5]x1
POL(r(x1)) = [4] + [3]x1
POL(s(x1)) = [4] + [2]x1
POL(u(x1)) = [1] + x1
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
r(r(z0)) → s(r(z0))
r(s(z0)) → s(r(z0))
r(n(z0)) → s(r(z0))
r(b(z0)) → u(s(b(z0)))
r(u(z0)) → u(r(z0))
s(u(z0)) → u(s(z0))
n(u(z0)) → u(n(z0))
t(r(u(z0))) → t(c(r(z0)))
t(s(u(z0))) → t(c(r(z0)))
t(n(u(z0))) → t(c(r(z0)))
c(u(z0)) → u(c(z0))
c(s(z0)) → s(c(z0))
c(r(z0)) → r(c(z0))
c(n(z0)) → n(c(z0))
c(n(z0)) → n(z0)
Tuples:
R(u(z0)) → c5(R(z0))
S(u(z0)) → c6(S(z0))
N(u(z0)) → c7(N(z0))
C(u(z0)) → c11(C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(n(z0)) → c15(N(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
C(r(z0)) → c13(C(z0))
R(r(z0)) → c1(R(z0))
S tuples:none
K tuples:
C(n(z0)) → c15(N(z0))
R(u(z0)) → c5(R(z0))
C(u(z0)) → c11(C(z0))
R(n(z0)) → c3(S(r(z0)), R(z0))
N(u(z0)) → c7(N(z0))
R(r(z0)) → c1(R(z0))
C(n(z0)) → c14(N(c(z0)), C(z0))
C(s(z0)) → c12(S(c(z0)), C(z0))
C(r(z0)) → c13(C(z0))
R(s(z0)) → c2(S(r(z0)), R(z0))
S(u(z0)) → c6(S(z0))
Defined Rule Symbols:
r, s, n, t, c
Defined Pair Symbols:
R, S, N, C
Compound Symbols:
c5, c6, c7, c11, c12, c14, c15, c2, c3, c13, c1
(31) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(32) BOUNDS(O(1), O(1))